If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-2X+8=23
We move all terms to the left:
X^2-2X+8-(23)=0
We add all the numbers together, and all the variables
X^2-2X-15=0
a = 1; b = -2; c = -15;
Δ = b2-4ac
Δ = -22-4·1·(-15)
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-8}{2*1}=\frac{-6}{2} =-3 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+8}{2*1}=\frac{10}{2} =5 $
| −25(10−x)=25x+250 | | 40-2y=3y | | −1/2x+3/2=1/2(3−x) | | 1/3(5-3))=1/6(x+1) | | 7x—3=-3+7x | | 6x=(11x+2) | | 2.0+0.9p=-(p-2.1) | | 4(3x-2)=5(2x-1) | | b+19=40 | | 7w-12=44 | | 6n+14=10-2n | | Y-2=-5/3(x-3) | | (-45)+3m=-60 | | 3b=10+b | | 7x^-28=0 | | 0.2x=360 | | 53=x-12 | | 0.759x^2=100 | | 5p−p+4p−6p=12 | | 11j-4j-j+3j-4j=15 | | 20+40r=32-2r | | 4(g–1)=243) | | 6x+15=18.33 | | t10=8 | | k-(-8)=6 | | .7(x+2)+1.6=17 | | 2(b+3)=-12 | | 10x+12=10x+6 | | 17r-10r-r=12 | | -2z+5=15 | | 9v-3v=6 | | 16d-12d=16 |